Page 11 - mpbcn2013no12

Basic HTML Version

分子植物育种
(
网络版
)
Fenzi Zhiwu Yuzhong (Online)
1087
3.2.6
图片处理与显示
所有图片都经过
Adobe PhotoShop CS6
处理。
蛋白质
3D
结构使用
Chimera (http://plato.cgl.ucsf.edu/
chimera/download.html)
显示。
作者贡献
张安是本研究的实验设计和实验研究的执行人;曹清
河完成数据分析,论文初稿的写作;赵冬兰和周志林参与实
验设计,试验结果分析;唐君是项目的构思者及负责人,指
导实验设计,数据分析,论文写作与修改,是本文的责任作
(
通信作者
)
。全体作者都阅读并同意最终的文本。
致谢
本研究由国家甘薯产业技术体系
(CARS-11-B-02-2012)
农 业 部
948
子 课 题
(2011-G1-20)
和 国 家
863
子 课 题
(2012AA101204)
共同资助。
参考文献
Bartels D., and Sunkar R., 2005, Drought and salt tolerance in
plants, Critical Reviews in Plant Sciences, 24(1): 23-58
http://dx.doi.org/10.1080/07352680590910410
Chang C.C., Slesak I., Jordá L., Sotnikov A., Melzer M.,
Miszalski Z., Mullineaux P.M., Parker J.E., Karpinska B.,
and Karpinski S., 2009, Arabidopsis chloroplastic
glutathione peroxidases play a role in cross talk between
photooxidative stress and immune responses, Plant
Physiol., 150(2): 670-683
http://dx.doi.org/10.1104/pp.109.135566
PMid:19363092 PMCid:2689974
Chappell T.M., and Rausher M.D., 2011, Genetics of resistance
to the rust fungus Coleosporium ipomoeae in three species
of morning glory (Ipomoea), PLoS One, 6(12): e28875
http://dx.doi.org/10.1371/journal.pone.0028875
PMid:22194936 PMCid:3237545
Chen S., Vaghchhipawala Z., Li W., Asard H., and Dickman
M.B., 2004, Tomato phospholipid hydroperoxide
glutathione peroxidase inhibits cell death induced by Bax
and oxidative stresses in yeast and plants, Plant Physiol.,
135(3): 1630-1641
http://dx.doi.org/10.1104/pp.103.038091
PMid:15235116 PMCid:519077
Depège N., Drevet J., and Boyer N., 1998, Molecular cloning
and characterization of tomato cDNAs encoding
glutathione peroxidase-like proteins, Eur. J. Biochem.,
253(2): 445-451
http://dx.doi.org/10.1046/j.1432-1327.1998.2530445.x
PMid:9654095
Faltin Z., Holland D., Velcheva M., Tsapovetsky M.,
Roeckel-Drevet P., Handa A.K., Abu-Abied M.,
Friedman-Einat M., Eshdat Y., and Perl A., 2010,
Glutathione peroxidase regulation of reactive oxygen
species level is crucial for in vitro plant differentiation,
Plant Cell Physiol., 51(7): 1151-1162
http://dx.doi.org/10.1093/pcp/pcq082
PMid:20530511
Gao M., Ashu G.M., Stewart L., Akwe W.A., Njiti V., and
Barnes S., 2011, Wx intron variations support an
allohexaploid origin of the sweetpotato [
Ipomoea batatas
(L.) Lam], Euphytica, 177(1): 111-133
http://dx.doi.org/10.1007/s10681-010-0275-z
Grabherr M.G., Haas B.J., Yassour M., Levin J.Z., Thompson
D.A., Amit I., Adiconis X., Fan L., Raychowdhury R., Zeng
Q.D., Chen Z.H., Mauceli E., Hacohen N., Gnirke A., Rhind
N., di Palma F., Birren B.W., Nusbaum C., Lindblad-Toh K.,
Friedman N., and Regev A., 2011, Full-length transcriptome
assembly from RNA-Seq data without a reference genome,
Nature Biotechnology, 29: 644-652
http://dx.doi.org/10.1038/nbt.1883
PMid:21572440 PMCid:3571712
Holland D., Ben-Hayyim G., Faltin Z., Camoin L., Strosberg
A.D., and Eshdat Y., 1993, Molecular characterization of
salt-stress-associated protein in citrus: protein and cDNA
sequence homology to mammalian glutathione peroxidases,
Plant Mol. Biol., 21(5): 923-927
http://dx.doi.org/10.1007/BF00027124
PMid:8467085
Holmes-Davis R., Tanaka C.K., Vensel W.H., Hurkman W.J.,
and McCormick S., 2005, Proteome mapping of mature
pollen of
Arabidopsis thaliana
, Proteomics, 5(18): 4864-4884
http://dx.doi.org/10.1002/pmic.200402011
PMid:16247729
Komiyama A., Sano Z., Murata T., Matsuda Y., Yoshida M.,
Saito A., and Okada Y., 2006, Resistance to two races of
Meloidogyne incognita
and resistance mechanism in
diploid
Ipomoea trifida
, Breeding Science, 56(1): 81-83
http://dx.doi.org/10.1270/jsbbs.56.81
Liu G., Huang Q.Q., Lin Z.G., Huang F.F., Liao H.X., and Peng
S.L., 2012, High tolerance to salinity and herbivory
stresses may explain the expansion of Ipomoea cairica to
salt marshes, PLoS One, 7(11): e48829
http://dx.doi.org/10.1371/journal.pone.0048829
PMid:23166596 PMCid:3499518
Liu Q.C., 2011, Sweet potato omics and biotechnology in
China, Plant Omics Journal, 4(6): 295-301
Mahajan S., and Tuteja N., 2005, Cold, salinity and drought